

Scheme & Syllabus for B.Tech. in Electrical Engineering according to Choice Based Credit System (CBCS)

(Semester-VII to Semester-VIII)

Department of Electrical Engineering From Academic Session 2022-23 onwards (Batch 2019-23 onwards)

School of Engineering & Technology

CENTRAL UNIVERSITY OF HARYANA MAHENDERGARH-123031 HARYANA

Central University of Haryana, Mahendergarh B.Tech. 4th YEAR (SEMESTER – VII) Choice Based Credit System Scheme Of Studies & Examinations w.e.f. 2021-22 (Batch 2018-19 onwards)

S.			Teach	ing Sch	edule	Cradita	Marks
No.	Course Code	Course Title	L	Т	Р	Creans	
1	BT EE701A	Electric Drives	3	0	0	3	100
2	BT EE702A	Project Stage –I	0	0	6	3	100
3	BT EE703A	Summer Internship Presentation	<mark>0</mark>	2	0	2	<mark>50</mark>
4		Program Elective – 6	3	0	0	3	100
5		Program Elective – 7	3	0	0	3	100
6		General Elective or Open Elective-4	3	1	0	4	100
7	BT EE710A	Seminar	<mark>0</mark>	2	0	2	<mark>50</mark>
Tota	al		12	04	06	20	600

L = Lecture, T = Tutorial, P = Practical, & C = Credits

NOTE: - Examinees will be allowed to use only non-programmable scientific calculators in the examination. Other electronic gadgets and sharing of materials will not be permitted during the examinations.

PROGRAM ELECTIVE-6 (PE6)

EE704A	Digital Control Systems
EE705A	Control System Design
EE706A	Non-linear and optimal control theory

PROGRAM ELECTIVE-7 (PE7)

E	E707A	Smart Grid
E	E708A	Electrical and Hybrid Vehicles
E	E709A	Power Quality and Facts

• The Evaluation of Seminar (BT EE710A) of 2 credits will be evaluated for 50 marks at departmental level.

Central University of Haryana, Mahendergarh B.Tech. 4th YEAR (SEMESTER – VIII)

Choice Based Credit System Scheme of Studies & Examinations w.e.f. Academic session 2022-23

(Batch 2019-23 and onwards)

S.			Teach	ning So	chedule	Cuedita	Monka	
No.	Course Code	Course Title	L	T	Р	Creatis	Marks	
1	BT EE800A	Project Stage II	0	0	26	<mark>13</mark>	300	
3		Program Elective – 8	3	0	0	3	100	
4		General Elective or Open Elective-3	3	1	0	4	100	
Tot	al		6	1	<mark>26</mark>	20	500	

L = Lecture, T = Tutorial, P = Practical, & C = Credits

Crown	D
Group	D

S.			Tea	ching S	Schedule	Cuedite	<mark>Marks</mark>	
No.	Course Code	Course Title		Т	Р	Creatts		
1	BT EE810A	Industry Internship	0	0	<mark>40</mark>	<mark>20</mark>	<mark>500</mark>	
Tota	al		0	00	<mark>40</mark>	<mark>20</mark>	<mark>500</mark>	

L = Lecture, T = Tutorial, P = Practical, & C = Credits

NOTE: - Examinees will be allowed to use only non-programmable scientific calculators in the examination. Other electronic gadgets and sharing of materials will not be permitted during the examinations.

PROGRAM ELECTIVE-8 (PE8)

Any course should be chosen from the given list OR equivalent course from MOOCS

EE803A	Special Electrical Machines
EE804A	Power Electronics and Control for Renewable Energy Systems
EE805A	Robust Control

		Program Name: B. TechElec	trical Engineering		
Course C	ode:	Course Name: Electric Drives		L T P C	
BT EE701	А			3 3	
Year and		4 rd year	Contact hours per v	week: (3 Hrs)	
Semester		7 th Semester	Exam: (3hrs.)		
Pre-requi	site	Electrical Machine, Power	Evalua	tion	
of course		Electronics	CIE: 30	TEE: 70	
Course O	utcom	es: On completion of the course, stud	ent would be able to:		
CO701.1	Unde	erstand the principle of electrical drive	s & be able to understa	and the dynamics	
	of ele	ectrical drive systems.			
CO701.2	Selec	et a drive for a particular application ba	ased on power rating &	k to select a drive	
	based	d on mechanical characteristics for a p	articular drive applica	tion	
CO701.3	Oper	ate state space model of DC motor	and apply different p	ower electronics	
	conv	erters for control of DC drives.			
CO701.4	01.4 Learn speed control of induction motor drives in an energy efficient manner			ent manner	
	using power electronics				
CO701.5	Familiarize with efficient use of electric drive.				
CO701.6	Ident	ify suitable form of electrical drives s	ystem		

Module	COURSE SYLLABUS CONTENTS OF MODULE		Cos
No	CONTENTS OF MODULE		
1	 Electrical Drives: Introduction, advantages, choice of electrical drives, status of ac and dc drives. Dynamics of Electrical Drives: Fundamental torque equations, multi-quadrant operation, equivalent values of drive parameters, load torque components, types of loads, steady state stability, load equalization. Control of Electrical Drives: Modes of operation, closed loop control of drives, sensing of current and speed. 	12	CO701.1,
2	Selection of Motor & its power rating: Types of motors & their enclosures, thermal model of motor for heating & cooling, classes of motor duty, rate of motor. Energy Conversion in Electric Drive: losses in electrical drive system, energy conversion, use of efficient semiconductor converters, energy efficient operation of drives.	10	CO701.2 CO701.5
3	DC Motor Drives: Speed-torque characteristics of different types of dc motors, starting, types of braking, transient analysis, speed control methods, static control of dc motors. Converter fed dc drive & chopper fed dc drive.	10	CO701.3

4	 Induction motor Drives: Characteristics, analysis and performance, starting methods, braking methods, transient analysis, methods of speed control, vector control. Static control techniques- stator frequency control, stator voltage control, rotor resistance control. Static Scherbius system & static Kramer system. Special Drives: Switched Reluctance motor, Brushless dc motor. Selection of motor for particular applications. 	13	CO701.4 CO701.6

- 1. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House.
- 2. S.K.Pillai, "A First Course on Electric Drives", New Age International.
- 3. V Subrahmanyam, "Electric Drives", Mcgrawhill Education

Reference Books:

- 1. M.Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 2. Mohammed A. El-Sharkawi, "Fundamentals of Electric Drives", Thomson Asia, Pvt. Ltd. Singapore.
- 3. N.K. De and Prashant K.Sen, "Electric Drives", Prentice Hall of India Ltd.
- 4. V.Subrahmanyam, "Electric Drives: Concepts and Applications", Tata McGraw Hill.

Program Name: B. TechElectrical Engineering									
Course Code:		Course Name: Digital Control systems			T	P	С		
BT EE704 A			3	-	-	3			
Year and		4 rd year	Contact hours per week: (3 Hrs)						
Semester		7 th Semester	Exam: (3hrs.)						
Pre-requisite		Control System, Signals and	Evaluation						
of course		Systems	CIE: 30 TEE: 70						
Course Outcomes: On completion of the course, student would be able to:									
CO704.1	Obtain discrete representation of LTI systems.								
CO704.2 Analyse stability of open loop and closed loop discrete-time system			ms.						
CO704.3	Design and analyse digital controllers.								
CO704.4	Desig	gn digital compensator and discrete obs	server for LTI systems						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Introduction Terminology: continuous time, discrete-time & digital signals; Basic structure of digital control scheme and brief description of its blocks. Advantages & problems of digital control, General principles of signal conversion: operation by A/ D & D/A converters, A/D and D/A converter circuits; Sample and hold circuit: Mathematical analysis of sampling process, Ideal sampler, Choice of sampling frequency, Aliasing; Sampling theorem, The Hold operation, ZOH. Unit sample sequence, Unit step sequence & Unit sinusoidal sequence. Difference Equation models & Impulse response models for discrete time systems. State space models of discrete systems, state space analysis, Controllability, reachability, reconstructibility and observability analysis.	10	CO704.1, CO704.2
2	Transform Domain Processing Definition of Z-transform; The Z-transforms of typical functions such as Unit sample sequence, Unit step sequence, sampled ramp function, sampled exponential function, sampled sinusoids; Operations with Z transform such as shifting (forward & backward); Z transform Inversion; Final value & Initial value theorems; Transfer function models; Unit delayer Transfer function; Dynamic response; Stability in z-plane; Jury Stability test; Z-plane poles v/ s stability (& the nature of response functions); Mapping s-plane to z-plane, Bilinear transformation.	10	CO704.2
3	MODELS OF DIGITAL CONTROL DEVICES & SYSTEMS	10	CO704.3

	z-domain description of sampled continuous-time plants, model of ADC & DAC, Interconnection of discrete-time & continuous time systems & their equivalent transfer functions; Implementation of digital controllers, Recursive realizations: direct, cascade & parallel realizations. Non-recursive realization:		
	Digital PID controller: Positional & velocity forms; Tuning rules for digital PID. Design of digital control system with dead beat response. Practical issues with dead beat response design.		
4	DESIGN OF DIGITAL CONTROL ALGORITHMS (10) Basic structure of digital control system; Routes to the design of digital Controller, z-plane specifications of control system design: steady state accuracy, Steady state errors & error constants for type -0,-1,-2 systems, Transient accuracy, dominant poles, Effect of extra zero & pole on discrete time 2nd order system; Digital compensator design using frequency response plot; Digital compensator design using root locus plot. Design of discrete observer for LTI System. Design of set point tracker.	10	CO704.4

Text/References:

- 1.M. Gopal, "Digital Control Engg.", New Age International Publishers, New Delhi.
- 2.M. Gopal, "Digital Control & State Variable Methods (Conventional and Intelligent Control System)", Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 3.G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison-Wesley, 1998.
- 4.B.C. Kuo, "Digital Control Systems", OXFORD UNIVERSITY PRESS.
- 5.K. Ogata, "Discrete-time Control Systems", Pearson Education, New Jersey.
- 6.Phillips, C. L. & H. T. Nagle, Jr., "Digital Control System Analysis", Pearson Education, New Jersey.
- 7.Hopis, C.H. and G.B. Lemont, "Digital Control System: Theory, Hardware & Software", McGraw-Hill Publications, New York.

Course	Course Name: CONTROL SYSTEM DESIGN			T	P	<u>C</u>			
Coue. /03A			5	U	-	3			
Year and	4 th Year Contact hours per w			per week: (3 Hrs.)					
Semester	7 th Sem Exam: (3hrs.)								
Pre-	CONTROL SYSTEM	Evaluation							
requisite		CIE: 30	TEE: 70						
of course									
Course Out	comes: On completion of the course, student	would be able to:							
CO705.1	Understand the different design specification	ns of Control System.							
CO705.2	Design of Control System in time and freque	ency domain.							
CO705.3	Design of PID controllers in time and freque	ency domain.							
CO705.4	Understand the state space representation of Control system.								
CO705.5	Understand the concept of controllability & observability.								
CO705.6	Design of Control system in state space repr	resentation.							

Program Name: B. Tech-Electrical Engineering

Module	COURSE SYLLABUS	Urc	Cos
No	CONTENTS OF MODULE	шт.	Cus
1	Design Specifications: Introduction to time-domain and frequency-domain design specification and its physical relevance. Effect of gain on transient and steady state response. Effect of addition of pole on system performance. Effect of addition of zero on system response	10	CO705.1,
2	 Design of Control System in time-domain: Introduction to compensator design in time-domain. Design of Lag, lead and lag-lead compensator in time domain. Feedback and Feed forward compensator design. Feedback compensation. Realization of compensators. Design of Control System in frequency-domain: Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using bode-plot. 	15	CO705.2
3	Design of PID controllers: Design of P, PI, PD and PID controllers in time-domain and frequency-domain for first, second and third order systems. Control loop with auxiliary feedback and Feed forward control.	9	CO705.3

4	Control System Design in state space: Review of state space representation. Concept of controllability & observability, effect of pole-zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Reduced order observer. Separation Principle.	11	CO705.4, CO705.5 CO705.6

1. N. Nise, "Control system engineering", John Wiley, 2000.

2. I. J. Nagrath and M. Gopal, "Control system engineering", New age international, 2018.

3. B. C. Kuo, "Automatic Control system", Prentice Hall, 1995.

Reference Books:

1. J. J. D'Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", McGraw Hill, 1995.

2. K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.

3. R. T. Stefani and G. H. Hostetter, "Design of feedback Control Systems", Saunders College Pub, 1994.

Course	Course Name:		L	I	P	C			
Code:706A			3	0	-	3			
	A Non-Linear and Optimal Control Syst	em							
Year and	4 th Year Contact hours per y			er week: (3 Hrs.)					
Semester	7 th Sem	Exam: (3hrs.)							
Pre-	CONTROL SYSTEM	Evaluation							
requisite	CIE: 30			TEE: 70					
of course									
Course Out	comes: On completion of the course, student	would be able to:							
CO706.1	Demonstrate non-linear system behavior by	phase plane and descr	ibing	fun	ction	L			
	methods.		-						
CO706.2	Perform the stability analysis nonlinear syst	ems by Lyapunov met	hod d	level	lop d	esign			
	skills in optimal control problems								
CO706.3	Design and apply state-of-the-art classical a	nd modern computatio	nal n	nethe	ods t	0			
	define and solve optimisation problems.								
CO706.4	Understanding of feedback optimal control	system							

Module	COURSE SYLLABUS		Cas
No	CONTENTS OF MODULE	Hrs.	Cos
1	Linear versus nonlinear systems - Describing function analysis: Fundamentals, common nonlinearities (saturation, dead - zone, on - off non - linearity, backlash, hysteresis) and their describing functions. Describing function analysis of nonlinear systems. Reliability of describing method analysis. Compensation and design of nonlinear system using describing function method. Phase plane analysis: Phase portraits, Singular points characterization. Analysis of non - linear systems using phase plane technique. Existence of limit cycles. Linearization: Exact linearization, input - state linearization, input - output linearization.	10	CO706.1,
2	Concept of stability, Zero - input and BIBO stability, stability in the sense of Lyapunov and absolute stability, Stability in the small and stability in the large, Lyapunov stability definitions, First method of Lyapunov,. Second (or direct) method of Lyapunov stability theory for continuous and discrete time systems, Aids to generate Lyapunov function – Krasovskii's theorem, Variable gradient method.	15	CO706.2
3	Aizerman's and Kalman's conjecture. Construction of Lyapunov function - Methods of Aizerman, Zubov, Variable gradient method. Lure problem. Popov's stability criterion, Formulation of the optimal	9	CO706.3

	control Problem, Calculus of variations, Minimum principle, Dynamic Programming, Numerical Solution of Two-point Boundary value problem.		
4	Optimal Feedback Control: Discrete-Time linear State regulator, Continuous-Time Linear state Regulator results of solve other linear problems, Suboptimal Linear regulators, Minimum-time Control of Linear Time-Invariant System. Stochastic Optimal Linear Estimation and Control Stochastic processes and linear systems, Optimal Estimation for Linear Discrete time Systems Stochastic Optimal Linear Regulator.	11	CO706.4,

- 1. M. Gopal, "Modern Control System Theory", New Age International, 2005.
- 2. K. Ogatta, "Modern Control Engineering", PHI, 2002..
- 3. B.C. Kuo, "Digital Control Systems", Oxford University Press, 1980.

References Books:

- 1. Anderson, Brian DO, and John B. Moore, "Optimal control: linear quadratic methods", Courier Corporation, 2007.
- 2. J. Speyer and D. Jacobson, "Primer on Optimal Control Theory", SIAM, 2010
- 3. R. Stengel, "Optimal Control and Estimation, Dover", 1994
- 4. K. Astrom, "Introduction to Stochastic Control Theory", Dover, 2006
- 5. B. Anderson and J. Moore, "Optimal Control", Dover, 2007
- 6. A. Bryson and Y. Ho, "Applied Optimal Control", Taylor & Francis, 1975
- 7. A. Bryson, "Applied Linear Optimal Control", Cambridge University Press, 2002
- 8. M. Athans and P. Falb, "Optimal Control", Dover, 2006
- 9. D. Naidu, "Optimal Control Systems", CRC Press, 2002
- 10. F. Lewis and V. Syrmos, "Optimal Control", Wiley-Interscience, 1995
- 11. P. Dorato, C. Abdallah, and V. Cerone, "Linear Quadratic Control", Krieger Publishing, 2000

I rogram Fame: D. Feen. Electrical Engineering									
Course Co	ode:	Course Name:		L	T	P	С		
BT EE-70	7 A	SMART GRID		3	0	-	3		
Year and 4 st year Contact hours per we		week: (4 Hrs) Exam:							
Semester		7 th Semester	(3hrs.)						
Pre-requi	site	Smart Grid	Evaluation						
of course			CIE: 30	TEE: 70					
Course O	utcom	es: On completion of the course, studen	t would be able to:						
CO707.1	To U	Inderstand basic concept of smart grid	and its need, opportuni	ities a	and	barri	ier and		
	comr	nunication in smart grid.							
CO707.2	Expla	ain the advanced metering infrastructure	, communication infrast	ructu	re ai	nd pi	rotocol		
	and d	lemand side integration for smart meteri	ing.						
CO707.3 Understand the concept of micro grid its need, operation, application, p			prot	ecti	on and				
	control, islanding mode and small scale different type of distributed energy resources.				rces.				
CO707.4	Anal	yze power quality issues and control ope	eration of micro grid an	d ICT	[for	sma	art grid		

Module	COURSE SYLLABUS		Con
No	CONTENTS OF MODULE	Hrs	Cos
1	Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid ,CDM opportunities in Smart Grid, What is a Smart Grid?, The Smart Grid Enables the ElectriNet SM, Local Energy Networks, Electric Transportation, Low-Carbon Central Generation, What Should Be the Attributes of the Smart Grid?, Why Do We Need a Smart Grid?, Is the Smart Grid a "Green Grid"?,	10	CO707.1,
2	Sensing, Measurement, Control and Automation Technologies: Smart metering and demand-side integration, Introduction, Smart metering, Evolution of electricity metering, Key components of smart metering, Smart meters: An overview of the hardware used Signal acquisition, Signal conditioning, Analogue to digital conversion, Computation, Input/output, Communication, Communications infrastructure and protocols for smart metering, Home-area network, Neighbourhood area network, Data concentrator, Meter data management system, Protocols for communications, Demand-side integration, Services provided by DSI, Implementations of DSI,	10	CO707.2,

Program Name: B. Tech.-Electrical Engineering

	Hardware support to DSI implementations, Flexibility delivered by		
	prosumers from the demand side, System support from DSI.		
	Micro Grids And Distributed Energy Resources: Concept of micro		
	grid, need & applications of micro grid, formation of micro grid, issues		
	of interconnection, protection & control of micro grid. Islanding, need		
	and benefits, different methods of islanding detection. Distributed		
3	Energy Resources: Small scale distributed generation, Distributed	10	CO707.3,
	Generation Technology, Internal Combustion Engines, Gas Turbines,		
	Combined Cycle Gas Turbines, Micro turbines, Fuel Cells, Solar		
	Photovoltaic, Solar thermal, Wind power, Geothermal, - all sources as		
	a DG. Advantages and disadvantages of DG.		
	Power Quality Management In Smart Grid: Power Quality & EMC		
	in Smart Grid, Power Quality issues of Grid connected Renewable		
	Energy Sources, Power Quality Conditioners for Smart Grid, Web		
	based Power Quality monitoring, Power Quality Audit. Information		
4	And Communication Technology For Smart Grid: Advanced Metering	10	CO707.4,
	Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area		
	Network (NAN), Wide Area Network (WAN). Bluetooth, Zig-Bee,		
	GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network,		
	Broadband over Power line (BPL)		

- 1. Ali Keyhani, "Design of Smart power grid renewable energy systems", Wiley IEEE, 2011.
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRCPress, 2009.
- 3. Stuart Borlase, "Smart Grid: Infrastructure, Technology and solutions " CRC Press.
- 4. Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley.
- 5. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability: 1", Artech House Publishers July 2011
- 6. MladenKezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert "Substation Automation (Power Electronics and Power Systems)", Springer

Reference Books:

- 1. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability", Artech House Publishers July 2011.
- 2. James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press.
- 3. MladenKezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert "Substation Automation (Power Electronice and Power Systems)", Springer

- 4. R.C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, "Electrical Power System Quality", 2nd Edition, McGraw Hill Publication.
- 5. Phadke, A.G., Thorp, J.S., "Synchronized Phasor Measurements and Their Applications", Springer.
- 6. James Momoh, "Smart Grid: Fundamentals of Design and Analysis", Wiley.

Program Name: B. TechElectrical Engineering							
Course Cod	le:	Course Name:		L	Τ	P	C
BT EE-708	A	ELECTRICAL AND HYBRID VEH	IICLES	3	-	-	3
Year and		4 st year	Contact hours per w	eek: (4 Hr	s) Ex	(am:
Semester		7 th Semester	(3hrs.)				
Pre-requisi	te of	Electrical And Hybrid Vehicles	Evalu	ation			
course			CIE: 30		TE	E: 7	0
Course Out	tcomes	: On completion of the course, student v	would be able to:				
CO708.1	Under	rstand objective and scope of Electric ve	chicle and its recent tren	nds			
CO708.2	Expla	in the basics of conventional vehicle, th	eir scope, performance	, char	acter	ristic	and its
	mathe	ematical model.					
CO708.3	Analy	ze social and environment impact of E	HV and various topolo	gies o	f ele	ectric	drives
	suitab	ble for hybrid electric vehicles.					
CO708.4	Expla	in the basics and different topologies of	Electric drive train and	l its co	onfig	urati	ion and
	analy	ze and control of advanced propulsion te	echnique in EHV.				
CO708.5	Under	rstand the use of different energy storage	technologies used for h	ybrid	elect	tric v	rehicles
	and th	nd their sizing and control.					
CO708.6	Interp	pret working of different classification of	f energy management s	ystem	used	l in I	Electric
	hybrid	d vehicle and its implementation and cas	se study.				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Introduction: Objective, scope and outcome of the course.	1	CO708.1
2	Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, Transmission characteristics, and mathematical model to describe vehicle performance.	5	CO708.2
3	Hybrid Electric Vehicles History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive- trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.	7	CO708.3
4	Electric Trains Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration	10	CO708.4

	and control of Permanent Magnet Motor drives, Configuration and		
	control of Switch Reluctance Motor drives, drive system efficiency.		
5	Energy Storage Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.	10	CO708.5
6	Energy Management Strategies Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	8	CO708.6

- 1. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003
- 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004
- 3. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 http://nptel.ac.in/courses/108103009/

Reference books:

- 1. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003
- 2. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals", Theory and Design, CRC Press, 2004.
- 3. Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles: Principle and Applications with Practical Perspectives", John Wiley & Sons Ltd., 2011.

I Togram Name. D. TechElectrical Engineering							
Course Code: 0		Course Name:		L	T	P	С
BT EE-709A POWER QUALITY AND FACTS		3	-	-	3		
Year and		4 st year	Contact hours per w	eek:	(4 H	rs) E	Exam:
Semester		7 th Semester	(3hrs.)				
Pre-requisite		POWER OUALITY	Evaluation				
of course		AND FACTS	CIE: 30	TEE: 70			0
Course O	utcom	es: On completion of the course, studen	it would be able to:				
CO709.1	Unde	erstand objective and scope of power qu	ality and Facts.				
CO709.2	Expla	ain the basics of reactive and active pow	ver in transmission.				
CO709.3	Expla	ain the basics and different topologies o	f SVC ,TCSC.				
CO709.4	Understand the use of different voltage source converter based (FACTS) controllers					ers	
CO709.5	Understand the use of different application of FACTS devices.						
CO709.6	Expla	ain the power quality problems in dis	stribution systems				

Program Name: B.Tech.-Electrical Engineering

Module	COURSE SYLLABUS		Cos
No	CONTENTS OF MODULE	1115	
1	Introduction: Objective, scope and outcome of the course.	1	CO709.1
2	TransmissionLinesandSeries/ShuntReactivePowerCompensationBasics of AC Transmission.Analysis of uncompensated ACtransmis- sion lines.Passive Reactive Power Compensation.Shunt and series compensation at the mid-point of an AC line.Comparison of Series and Shunt Compensation	5	CO709.2
3	Thyristor-based Flexible AC Transmission Controllers (FACTS) Description and Characteristics of Thyristor-based FACTS devices: Static VAR Compensator (SVC), Thyristor Controlled Series Capacitor (TCSC), Thyristor Controlled Braking Resistor and Single Pole Single Throw (SPST) Switch. Configurations/Modes of Operation, Harmonics and control of SVC and TCSC. Fault Current Limiter.	7	CO709.3
4	Voltage Source Converter based (FACTS) controllers Voltage Source Converters (VSC): Six Pulse VSC, Multi- pulse and Mul- ti-level Converters, Pulse-Width Modulation for VSCs. Selective Har- monic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II	10	CO709.4

	controllers, Static Synchronous Series Compensator (SSSC)		
	Operation and Control Working principle of Interphase		
	Power Flow Controller. Other Devices: GTO Controlled		
	Series Compensator. Fault Current Limiter.		
5	Application of FACTS Application of FACTS devices for power-flow control and stability im- provement. Simulation example of power swing damping in a single- machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.	10	CO709.5
6	Power Quality Problems in Distribution Systems Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Waveform Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve	8	CO709.6

TEXT BOOKS:

- 1. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technol- ogy of FACTS Systems", Wiley-IEEE Press, 1999.
- 2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.
- 3. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.
- 4. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.

Program Name: B. TechElectrical Engineering							
Course Code: Course Name:		L	Т	Р	С		
BT EE-80	3A	SPECIAL ELECTRICAL MACHIN	NES	3	-	-	3
Year and		4 st year	Contact hours per we	ek:	(4 E	Irs)	
Semester		8 th Semester	Exam: (3hrs.)				
Pre-requi	site of	POWER OUALITY	Evalua	tion			
course		AND FACTS	CIE: 30	TEE: 70			0
Course O	utcome	s: On completion of the course, student	would be able to:				
CO803.1	Use di	fferent types of motor efficiently for va	rious applications				
CO803.2	Mainta	ain different types induction machines f	for different applications	5			
CO803.3	Mainta	Maintain different types synchronous machines for different applications					
CO803.4	Maintain different types of Permanent magnet motors						
CO803.5	Mainta	ain various types of Small specialised e	lectric machines				

Module	COURSE SYLLABUS	Hre	COs
No	CONTENTS OF MODULE	111.5	COS
1	Stepping motors: Constructional features, principle of operation, types, modes of excitation, torque production in variable reluctance (vr) stepping motor, static and dynamic characteristics, introduction to drive circuits for stepper motor, suppressor circuits, closed loop control of stepper motor- applications	1	CO803.1 CO803.2
2	Switched reluctance motors: principle of operation, constructional features, torque equation, power semi conductor switching circuits, frequency of variation of inductance of each phase winding - control circuits of srm-torque - speed characteristics, microprocessor based control of srm drive, applications.	5	CO803.1 CO803.2
3	Synchronous reluctance motors constructional features: axial and radial air gap motors. Operating principle, reluctance torque - phasor diagram, speed torque characteristics, applications.	7	CO803.2 CO803.3
4	Permanent magnet brushless dc motors : commutation in dc motors, electronic commutation - difference between mechanical and electronic commutators- hall sensors, optical sensors, construction and principle of pmbl dc motor, torque and e.m.f equation, torque-speed characteristics, power controllers-drive circuits, applications	10	CO803.1 CO803.4
5	Permanent magnet synchronous motors: Construction and types, principle of operation, emf and torque equation, phasor diagramtorque speed characteristics, power controllers- self control,	10	CO803.4 CO803.5

	vector control, microprocessor based control, applications		
--	--	--	--

- 1. Miller, T. J. E., "Brushless Permanent Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.
- 2. Kenjo, T., and Sugawara, A., "Stepping Motors and their Microprocessor Controls", Oxford Science Publications, 1984.
- 3. Venkataratnam K., "Special Electrical Machines", CRC Press, 2009.

Reference Books:

- 1. Krishnan, R., "Permanent Magnet and BLDC Motor Drives", CRC Press, 2009.
- 2. Chang-liang, X., "Permanent Magnet Brushless DC Motor Drives and Controls", Jun 2012

Program Name: B.Tech.-Electrical Engineering

Course Co	de: Course Name: POWER ELECTRONICS AND		L	Τ	Р	С	
BT EE804 .	A	CONTROL FOR RENEWABLE	ENERGY	3	-	-	3
	SYSTEMS						
Year and		4 rd year	Contact hours per v	week: (3 Hrs)			
Semester		8 th Semester	Exam: (3hrs.)				
Pre-requisi	ite of	Power Electronics and Control for	Evalua	Evaluation			
course		Renewable Energy Systems	CIE: 30	TEE: 70		0	
Course Ou	Course Outcomes: On completion of the course, student would be able to:						
CO804.1	Analy	ze power electronics converters cont	controls				
CO804.2	Apply power electronics converters in renewable energy systems						
CO804.3	Desig	n advance power electronics converte	ers control schemes				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Fundamentals of Power Converters: DC/DC converters, AC/DC converters, DC/AC converters, Classical Multilevel Inverters, SPWM, SVPWM.	10	CO804.1, CO804.2
2	Modelling of Power Converters: Introduction to Power Electronic Converters Modelling, Switched Model, Classical Averaged Model, Generalized Averaged Model, Small Signal Analysis	10	CO804.2
3	Control of Power Converters : General Control Principles of Power Electronic Converters, Linear Control Approaches for DC-DC Power Converters, Linear Control Approaches for DC- AC and AC-DC Power Converters, Energy-Based Control of Power Electronic Converters, Variable-Structure Control of Power Electronic Converters.	10	CO804.2, CO804.3
4	Control of Renewable Energy Systems : Control of voltage source converters with LCL filters, Control of three-phase converters including Phase Locked Loop, Control of PV systems, Control of Wind Energy Systems.	10	CO804.3

Text/References:

- 1. AntonetaIuliana Bratcu, Iulian Munteanu, and Seddik Bacha "Power Electronic Converters Modeling and Control" Springer Press, 2013.
- 2. FredeBlaabjerg, "Control of Power Electronic Converters and Systems" Academic Press, 2018.
- 3. Felix A. Farret, M. Godoy Simões"Modeling Power Electronics and Interfacing Energy Conversion Systems"John Wiley & Sons, 2017.

Program Name: B. Tech.-Electrical Engineering Course Name: ROBUST CONTROL Course Code: С L Т Р **BT EE805 A** 3 -_ 3 4rd vear Year and Contact hours per week: (3 Hrs) 8th Semester Semester Exam: (3hrs.) **ROBUST CONTROL Pre-requisite of Evaluation** CIE: 30 **TEE: 70** course Course Outcomes: On completion of the course, student would be able to: Understand LTI systems and its applications CO805.1 CO805.2 Apply Lyapunov theorem for any stability problem

CO805.3 Design passive systems in frequency and time domain

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Modeling of uncertain systems, Signals and Norms, Lyapunov theory for LTI systems	10	CO805.1, CO805.2
2	Passive systems – frequency domain Passive systems – time domain	7	CO805.2
3	Robust Stability and performance, Stabilizing controllers – Coprime factorization	8	CO805.2, CO805.3
4	LQR, LQG problems, Ricatti equations and solutions, Ricatti equation solution through LMI, H-infinity control and mu- synthesis, Linear matrix inequalities for robust control	10	CO805.3

Text/References:

- 1. L. Fortuna, M. Frasca (Eds.), "Optimal and Robust Control", CRC Press, 2012
- 2. K. Zhou, J. C. Doyle and K. Glover, "Robust and Optimal Control", Prentice Hall, 1996
- 3. J. C. Doyle, B. A. Francis and A. R. Tannenbaum, "Feedback Control Theory", Macmillan, 1992

